Optimizing Sulfuric Acid 98% Leaching: Lithium Recovery from Madagascar Spodumene
Abstract
A comprehensive study of lithium extraction from Vakinankaratra, Madagascar spodumene through sulfuric acid digestion and subsequent aqueous leaching is presented. The process initiates with calcination, a pretreatment designed to induce the alpha-to-beta phase transformation of spodumene, resulting in decreased density, increased friability, and enhanced chemical reactivity. Characterization of the ore, employing X-ray fluorescence (XRF) and atomic absorption spectroscopy (AAS), revealed a mineralogical composition dominated by oxides of lithium, silicon, aluminum, potassium, and fluorine, confirming the presence of economically relevant lithium concentrations. The investigation explored the influence of reaction time, varying from one to three hours, at elevated digestion temperatures. Rigorous optimization of experimental parameters was conducted, yielding significant insights into the leaching process. The findings demonstrate a strong correlation between lithium extraction efficiency and the ore-to-acid ratio, temperature, and, most notably, reaction time. Under optimized conditions, specifically a reaction temperature of 250°C and a duration of three hours, a 92% lithium extraction rate was achieved for both calcined spodumene and lepidolite samples. This study provides a detailed understanding of the critical parameters governing lithium extraction from Malagasy spodumene, contributing to the development of efficient and industrially applicable extraction methodologies.
Keywords
Full Text:
PDFReferences
Barbosa, L. I., Valente, G., Orosco, R. P., & Gonzalez, J. A. (2013). Lithium extraction from β-spodumene through chlorination with chlorine gas. Minerals Engineering, 50-51, 29–34.
Braga, P., França, S., Neumann, R., Rodriguez, M., & Rosales, G. (2019). Alkaline process for extracting lithium from Spodumene. Hydroprocess, 2–3.
Deberitz, J.; Boche, G. Lithium und seine Verbindungen-Industrielle, medizinische und wissenschaftliche Bedeutung. Chem. Unserer Zeit 2003, 37, 258–266. [CrossRef]
Dessemond, C., Lajoie-Leroux, F., Soucy, G., Laroche, N., & Magnan, J.-F. (2019). Spodumene: The lithium market, resources and processes. 1 Minerals, 9(12), 765. https://doi.org/10.3390/min9120765
Dinh, T. T. H. (2015). Processing of Vietnamese lithium ores to produce LiCl [Doctoral dissertation, Albert-Ludwigs-Universität Freiburg im Breisgau].
Ellestad, R. B., & Milne, K. L. (1950). Method of extracting lithium values from spodumene ores. United States Patent Application 2,109.
Fosu, A. Y., Kanari, N., Vaughan, J., & Chagnes, A. (2020). Literature review and thermodynamic modelling of roasting processes for lithium extraction from spodumene. Metals, 10(10), 1312. https://doi.org/10.3390/met10101312
Garrett, D. E. (2004). Lithium. In *Handbook of lithium and natural calcium chloride. Their deposits, processing, uses and properties* (pp. 1–235). Elsevier Academic Press.
Garrett, D.E. Handbook of Lithium and Natural Calcium Chloride; Elsevier: Amsterdam, The Netherlands, 2004; ISBN 0080472907.
GB/T51382. 2019. Standard for process design of lithium refinery. China Minstry of Housing and Urban-Rural Development, China State Administration for Market Regulation (in Chinese).
Gmar, S., & Chagnes, A. (2019). Recent advances on electrodialysis for the recovery of lithium from primary and secondary resources. Hydrometallurgy, 189, 105124. https://doi.org/10.1016/j.hydromet.2019.105124.
Guo, H., Kuang, G., Wang, H., Wang, H., & Zhao, X. (2017). Investigation of enhanced leaching of lithium from α-spodumene using hydrofluoric and sulfuric acid. Minerals, 7(12), 241. https://doi.org/10.3390/min7120241.
Habashi, F. (1997). Alkali metals. In Handbook of extractive metallurgy (pp. 2029–2051). Willey-VCH.
Holleman, A. F., Wiberg, E., & Wiberg, N. (2016). Grundlagen und Hauptgruppenelemente: Band 1: Grundlagen und Hauptgruppenelemente (103rd ed.). De Gruyter.
Kondas, J., & Jandová, J. (2006). Lithium extraction from zinnwaldite waste after gravity dressing of Sn-W ores. Acta Metallurgica Slovaca, 197–202.
Kotsupalo, N. P., Isupov, V. P., & Ryabtsev, A. D. (2009). Prospects for the use of lithium-bearing minerals. Theoretical Foundations of Chemical Engineering, 43(6), 800–809.
Kuang, G., Liu, Y., Li, H., Xing, S. Z., Li, F. J., & Guo, H. (2018). Extraction of lithium from β-spodumene using sodium sulfate solution. Hydrometallurgy, 177, 49–56. https://doi.org/10.1016/j.hydromet.2018.02.015
Lajoie-Leroux, F., Dessemond, C., Soucy, G., Laroche, N., & Magnan, J.-F. (2018). Impact of the impurities on lithium extraction from β-spodumene in the sulfuric acid process. Minerals Engineering, 126, 168–176. https://doi.org/10.1016/j.mineng.2018.06.009.
Marcinov, V., Klimko, J., Takáčová, Z., Pirošková, J., Miškufová, A., Sommerfeld, M., Dertmann, C., Friedrich, B., & Oráč, D. (2023). Lithium production and recovery methods: Overview of lithium losses. Metals, 13(7), 1213. https://doi.org/10.3390/met13071213
Margarido, F., Vecceli, N., Durao, F., Guimarães, C., & Nogueira, C. A. (2014). Mineralo-metallurgical processes for lithium recovery from pegmatitic ores. Comunicações Geológicas, 795–798.
Meshram, P., Pandey, B. D., & Mankhand, T. R. (2014). Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy, 150, 192–208. https://doi.org/10.1016/j.hydromet.2014.10.012
Nandihalli, N., Chouhan, R. K., Kuchi, R., & Hlova, I. Z. (2024). Aspects of spodumene lithium extraction techniques. Sustainability, 16(19), 8513. https://doi.org/10.3390/su16198513
Nogueira, C. A. (1996). Extração de lítio de recursos nacionais provas de acesso a assistente de investigação. LNETI..
Nogueira, C. A., Margarido, F., Vecceli, N., Durao, F. O., & Guimarães, C. (2014). Comparison of processes for lithium recovery from Lepidolite by H2SO4 digestion or HCl leaching. In Proceedings of the International Conference on Mining, Material and Metallurgical Engineering.
Raherisoa, H. (2017). Caractérisation de la tourmaline et des minéraux associés de la vallée de Sahatany, corrélation géologie – gitologie – gemmologie [Thèse de doctorat].
Rakotoarisoa, N. D. (2003). Contribution à l’étude monographique des gites pegmatitiques de région de Betafo-Antsirabe. Interprétation structurale d’images Landsat [Mémoire de DEA]..
Rakotovao, S. R. (2004). Contribution à l'étude des pegmatites Rhondizites de la région d'Ibity (Gisement de Manjaka et d'Antandrokomby) [Mémoire de DEA, Université d'Antananarivo].
Ran, J. W., Liu, X., Pei, J., & Yin, W. X. (2016). Development of production technology of lithium resource in China. Guangzhou Chemical Industry, 44(13), 4–6. https://doi.org/10.3969/j.issn.1001-9677.2016.13.002
Ranorosoa, N. J. (1986). Étude minéralogique et micromonométrique des pegmatites du champ de la Sahatany [Thèse de doctorat, Université Paul Sabatier].
Sahoo, S. K., Tripathy, S. K., Nayak, A., Hembrom, K. C., Dey, S., & Rath, R. K. (2024). Beneficiation of lithium bearing pegmatite rock: A review. Mineral Processing and Extractive Metallurgy Review, 45(1), 1–27. https://doi.org/10.1080/08827508.2022.2117172
Schmidt, M. (2017). Rohstoffrisikobewertung Lithium. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Deutsche Rohstoffagentur.
Sitando, O., & Crouse, P. (2011). Processing Zimbabwean petalite to obtain lithium carbonate. International Journal of Mineral Processing, 98(1-2), 45–50.
Su, H., Zhu, Z. W., Wang, L. N., & Qi, T. (2019). Research progress in extraction and recovery of lithium from hard-rock ores. CIESC Journal, 70(1), 10–23. https://doi.org/10.11949/j.issn.0438-1157.20180465.
Swain, B. (2017). Recovery and recycling of lithium: A review. Separation and Purification Technology, 172, 388–403. https://doi.org/10.1016/j.seppur.2016.08.031
Tadesse, B., Makuei, F., Albijanic, B., & Dyer, L. (2019). The beneficiation of lithium minerals from hard rock ores: A review. Minerals Engineering, 131, 170–184. https://doi.org/10.1016/j.mineng.2018.11.023
Tan, B., Liu, X. H., Liu, X. D., & Yi, M. G. (2021). Study on law of lithium extraction and impurity removal from spodumene leaching solution. Inorganic Chemicals Industry, 53(4), 56–60. https://doi.org/10.11962/1006-4990.2020-0315
U.S. Geological Survey. (2023). Mineral commodity summaries 2023. U.S. Geological Survey.
Zhu, Z. H., Zhu, C. L., Wen, X. M., Zhuge, Q., & Ling, B. P. (2008). Progress in production process of lithium carbonate. Journal of Salt Lake Research, 16(3), 64–72.
DOI: https://doi.org/10.33258/birex.v7i4.8114
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.