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Abstract: This study examined how the dynamic programming technique was applied to the 

Ebonyi State Building Materials Industry in Ezzamgbo, Nigeria, in order to maximize profits. 

The study looked at how effective dynamic techniques are in the industry for making 

decisions. The Administration, Management, Statistical, and Research department of the 

industry provided the data for the study. Dynamic programming was utilized in this study to 

model the industry data that was gathered. Concrete blocks, electric poles, and culvert rings 

are among the three raw materials produced by the industry in a range of sizes. After the 

model was solved and applied to the industry, it was determined that, in order to maximize 

profit, the industry should only produce 10.3632-meter high tension electric poles for eight 

hours. According to the findings, the production of 32 sets of 10.3632-meter high tension 

electric poles using the entire 8-hour machine time allotted each day yielded the highest 

profit of N448,000 

 

Keywords: Dynamic programming, profit maximum, optimization, high tension poles, 

Industry. 

 

 

I. Introduction 
 

On May 30, 1987, Ebonyi State Building Materials Industry Limited was founded in 

Ezzamgbo. The industry was located in Nigeria’s Ebonyi State. Nigeria’s four states enclose 

the state. Cross River State borders it on the east, Benue State borders it on the north, Enugu 

State borders it on the west, and Abia State borders it on the south. In this region of the 

country, the industry was founded to aid in the production of building materials for affordable 

homes. The following raw materials are produced by the industry: concrete blocks with 

dimensions of 0.2286 and 0.1524 meters, fancy decorated blocks, electric poles with 

dimensions of 10.3632, 8.5344, and 7.3152 meters, and convert rings with dimensions of 

1.0000, 0.8000, 0.6000, and 0.4000 meters. The state makes money by selling these goods to 

both domestic and foreign consumers. For the highest level of material production, the 

industry has a large number of machines. Therefore, dynamic programming which is quicker, 

less computationally intensive, and more accurate in providing the best solution to the 

problem was used to solve the profit maximization problem in the products of the Ebonyi 

State Building Materials In- dustry Limited Ezzamgbo [2], [10]. American mathematician 

Richard Bellman developed the crucial mathematical programming technique known as 

dynamic programming in the 1950s [12]. It is a mathematical solution technique used for 

making a series of decisions [4], [11]. It can convert an n dimension decision problem into 

multiple one dimension optimization problems and solve each one separately in any given 

dynamic programming problem [14]. In order to optimize a problem with known input 

parameters using the dynamic programming technique, we first divide the problem into 
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several decision points. Every point at which a decision needs to be made is referred to as a 

stage; depending on the type of decision, these stages may be finite or infinite. The 

information or parameter that connects the stages so that the best choice for the remaining 

stages can be made without having to reexamine how the decisions for the earlier stages were 

made is, therefore, the state variable at a particular stage. If not, the state variable serves as an 

input parameter for each stage. The stage is linked by the variable because, as should be 

noted, an input parameter to one stage produces an output parameter for that stage, which is 

the input parameter for the subsequent stage [1], [3]. An appropriately defined state variable 

ensures that the solution is workable for every state and gives the problem solver the chance 

to think about each step independently. The beauty of dynamic programming is the principle 

of optimality, which is also reached by properly defining the state. The type of problem being 

studied determines how the state variable changes. According to a work force size model, it 

might be the quantity of workers available each week [9]. In the dynamic programming 

model, the decision value stands for the range of options from which the best choices can be 

made. For a production planning model, it could be the variety of goods a business produces 

or the quantity among other things, the number of units of goods to be included in a cargo 

loading model or the year in an equipment replacement model [5]. It is common knowledge 

that dynamic programming (DP) decision-making is a methodical, phased process. A 

decision benefit equation represents every choice made at every level. Typically, this 

equation is referred to as the return function [6], [7]. Let’s look at the n-stage DP model here, 

which is as follows: 

 
Figure 1: n-stage DP model 

 

Where   is the input state valuable at stage   

Sn is the output state (state variable at stage  ; 

  is the stage number,   

  is the decision variables; 

  =   is the return function. 

Each decision made at each stage in the aforementioned model has a relative value or benefit 

to the system’s overall effectiveness, which is reflected holistically by the so-called return 

function  . Since it returns to the problem’s objective function for each set of stage decisions, 

the equation   is in fact a return function. It should be noted that both the state variable   and 

the decision variable   are necessary for the return function to function. The choice that 

produces the highest (or lowest) return for a specific value of the state variable   at stage   

would be considered optimal. Regardless of the initial stage and decision, the remaining issue 

with the stage and stage resulting from the first decision is regarded as the initial condition 

for the optimal set of decisions in a multistage decision process [8]. 
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Table 1. Cost of producing each unit of product 

Product Dimension/type 
Unit 

cost(N) 
 Unit-Quantity 

Concrete blocks 0.2286m in width, 348  6 

0.1524m in width 294  6 

Fany decorate 300  6 

Culvert Rings 1.000m in diameter 15 ,000  6 

8.000m in diameter 11 ,000  6 

6.000m in diameter 8 ,500  6 

4.000m in diameter 7 ,000  6 

Electric poles 10.3632m 23,500  5 

8.5344m 21,000  5 

7.3152m 18,500  5 

 
Table 2. Selling price of each product 

Product Dimension Selling price(N) 

Concrete blocks 0.2286m in width, 70 

0.1524m in width 58 

Fancy decorated  60 

Culvert Rings 1.000m in diameter 3 ,000 

0.8000m in diameter 2 ,500 

0.6000m in diameter 2 ,200 

0.4000m in diameter 2 ,000 

Eletric poles 10.3632m 7,500 

8.5344m 6,000 

7.3152m 5,000 
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II. Research Methods 
 

The data for this study were selected from the Administration, Management, statistical 

and research department of the industry. We are concerned on the cost of production and 

the selling price of the products. The industry gave us that six blocks of the same dimension 

make up a unit that is, it takes the machine a unit time to mould six blocks. Similarly, six 

culvert rings of the same height are unit products. The data in tables 1 and 2 respectively 

depict the cost of production of each singular product [13],[15]. It takes 5 minute to mould a 

unit of concrete blocks of the same dimension, 12 minutes to mould a unit of the same 

dimension, 12 minutes to mould a unit of culvert rings of the same dimension and 15 minutes 

to mould a unit of electric poles of the same height. The total machine hour available in a 

day is 8 hours. It is pertinent to note that dynamic programming determines the best solution 

to an n-variable problem by developing it into n-variable problem by developing it into n-stage 

with each stage comprising of a single variable sub-problem. In order to present a clear 

picture of the recursive nature of the dynamic programming techniques,we consider the 

optimization problem given below: 

 

 
(2.1) Subject to  

 

In order to solve the above equation 2.1 by dynamic programming, we first decompose it 

into N-stage sub-program. Thus 

 
Figure 2: -stage sub-program: Input-Output chain 

 

Where = the state variable;  

 is the initial state while SN is the terminal state. 

 the stage return functions,  

 the stages, j = 1 , 2 , . . . , N  

 the decision variables,  

The figure (2) above is called an input-output chain. An input to a stage is the state for 

that stage while an output from that stage becomes a state for the next stage [6], [9]. 

 

 

III. Results and Discussion 

 
In this research, we have to make a production-planning schedule that will maximize the 

profit of the industry. Let  be the respective number of 

0.2286m, 0.1524m, for concrete blocks and fancy decorated blocks 
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culvert rings and  electric 

poles produced by the industry respectively. The cost of producing each product is as follows: 

 Blocks will cost   

 Blocks will cost   

 Blocks will cost   

 Culvert rings will cost   

 Culvert rings will cost   

 Culvert rings will cost   

 Culvert rings will cost   

 Electric pole will cost   

 Electric pole will cost   

 Electric pole will cost   

 

Similarly, from table 1, the selling prices of these products are as follows: 

 Blocks sell at   N   

 Blocks sell at    N  

 Blocks sell at    N  

 Culvert rings will cost  N   

 Culvert rings will cost    N  

 Culvert rings will    N  

 Culvert rings will cost    N  

 Electric pole will cost    N  

 Electric pole will cost    N  

 Electric pole will cost    N  

 

The profit function P is gotten by subtracting the sum of the cost prices from the sum of the 

selling prices to be given as: 

 

Hence the objective function is given as: 

MaxP = 12x1 + 9x2 + 10x3 + 500x4 + 666.67x5 + 783.33x6 + 833.33x7 + 2800x8 + 180x9 

+ 1300x10.                                       (3.1) 

We consider the time constraints it takes 5 minutes to mould a set of blocks of the same 

dimensions, 12 minutes for culvert rings of the same dimension and 15 minutes for electric poles 

of the same dimension and there are a total of 8 machines hours (480 minutes) available in each 

day. Therefore, we must have 

5(x1 + x2 + x3) + 12(x4 + x5 + x6 + x7) + 15(x8 + x9 + x10) ≤ 480 as the only contraint of 

equation 3.1. We can now form an optimization as 

MaxP = 12x1+9x2+10x3+500x4+666.67x5+783.33x6+833.33x7+2800x8+180x9+1300x10, 

subject to 

5x1 + 5x2 + 5x3 + 12x4 + 12x5 + 12x6 + 12x7 + 15x8 + 15x9 + 15x10 (3.2) 

xj ≥ 0,j = 1,2,..., 10. 

The dynamic programming problem is solved by using the recursive equation starting from 

the first through the last stage that is obtaining the sequence. f1   f2   f3   ...   fn. The dynamic 

programming decomposes the optimization problem in the equation above into ten stages, where 

the stages are the ten different products produced by the industry. The decision variables are the 
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time taken to produce each set of the products. Finally, the state of the problem becomes total 

amount of time available at each stage for the production of the item of the stage. 

 

 
Figure 3: input-output diagram 

 

From figure 3 above, we observe that 

k0 = 480, k1 = 480 − 5x1, k2 = k1 − 5x2 

So, in general 

ki = ki−1 − αxj, (3.3) 

where i = 0,1,..., 9;j = 1,2,..., 10. We calculate the maximum profit by forward recursion. Equation 

3.3 is the transformation equation. From equation 3.3, we have ki = 0, whenever k1−i = 480 and 

ki = 480 whenever k1−i = 0. However at points where ki = 0, we have that the number of products 

to be produced is zero which is trivial. Hence, we turn attention to case where ki = 480, working 

by forward recursion, since the terminal state is known to be zero in whatever case, we have the 

following sequence of calculations: For stage n = 1, we have 

Max p1 = 12x1 subject to k0 ≤ 5x1. 

At maximum, k0 = 5x1, It implies that 480 = 5x1 =⇒ x1 = 96. Hence, p1 maximum = •12× 96 = 

•1152.00. 

Stage n = 2, we have 

Max p2 = 9x2 S.t k1 ≤ 5x2. 

S.t k1 ≤ 5x2. 

At maximum, 480 = 5 x2 =⇒ x2 = 96 hence, p2 maximum = •9 × 96 = •864.00 

The nontrivial solution of the model equation above using the dynamic programming gives the 

following results as presented in the table below: 
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Table 3: Cost of producing each unit of product 

S/N Product xj unit profit(N) Total profit( N) 

1 0.2286m blocks 96 1,152.00 6,912.00 

2 0.1524m blocks 96 864.00 5,184.00 

3 Fany 

block 
96 960.00 5,760.00 

4 1.0000m Culvert Rings 40 20 ,000.00 120,000.00 

5 0.80000m culvert rings 40 26 ,666.00 160,000.80 

6 0.60000m culvert rings 40 31 ,333.20 187,999.20 

7 0.4000m culvert rings 40 33 ,333.20 199,999.20 

8 10.3632m electric poles 32 89,600.00 448,000.00 

9 8.5344m electric poles 32 57,600.00 288,000.00 

10 7.3152m electric poles 32 41,600.00 208,000.00 

It is pertinent to note that the total profit obtained in table 3 above by multiplying 

the unit profit by the number of product that make the set. 

 

IV. Conclusion 
 

When 32 sets of 10.3632m high tension electric poles were produced using the entire 8- 

hour machine time allotted each day, the maximum profit realized was N 448,000.00. It was 

demonstrated that, in comparison to concrete blocks and culvert rings, the profit contributions 

of electric poles measuring 8.5344m and 7.3152m are on the higher end of the spectrum. 

Since it is the product that yielded the highest profit, the industry should focus on producing 

all types of electric poles. 
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