Business Intelligence Analysis and Design to Improve Revenue Performance at Holding Companies

Syaiful Rachman, Dina Anggraini

Abstract


COVID-19 Virus Disease 2019 (COVID-19) is rapidly spreading around the world, so the world economy is hit by a major crisis. Government policies for restrictions on activities make the company experience a significant decrease in revenue, especially for companies in the field of property and hotels, so the need for information on the entire business process of the company becomes one of the important needs for the survival of the company. Business Intelligence (BI) is one of the solutions for companies' needs, especially in analyzing and providing access to data to help make better decisions. Companies need dashboards to process data into information, so that decision-making can be used to support business processes that are running in the midst of a pandemic. Therefore, a Business Intelligence dashboard is needed to analyze revenue data that can be used to improve the performance of each branch in the company. The stages of making a BI dashboard are literature study, justification, planning, business analysis, design, construction, and report. The results of this study are visualizations in the form of graphs of PT JSI Tbk's revenue, Company revenue, Branch revenue, and Branch revenue in 2021. Based on the results of the prototype of the BNV, PM, and HCR branches must be creative in improving performance or operational cost efficiency.


Keywords


COVID-19 Virus 19; business intelligence; dashboard

Full Text:

PDF

References


Alviana, S., & Kurniawan, B. (2019). Analisis Data Penerimaan Mahasiswa Baru Untuk Meningkatkan Potensi Pemasaran Universitas Menggunakan Business Intelligence (Studi Kasus Universitas XYZ). Infotronik: Jurnal Teknologi Informasi Dan Elektronika, 4(1), 10–15.

Appelbaum, D., Kogan, A., Vasarhelyi, M., & Yan, Z. (2017). Impact of business analytics and enterprise systems on managerial accounting. International Journal of Accounting Information Systems, 25, 29–44.

Brannon, N. (2010). Business intelligence and E-discovery. Intellectual Property & Technology Law Journal, 22(7), 1.

El-Sappagh, S. H. A., Hendawi, A. M. A., & el Bastawissy, A. H. (2011). A proposed model for data warehouse ETL processes. Journal of King Saud University-Computer and Information Sciences, 23(2), 91–104.

Inmon, B. (2005). World-class business intelligence. Information Management, 15(2), 60.

Inmon, W. H. (2002). Toward a Unified Theory of Meta-Data. The Data Administration Newsletter, 22.

Kimball, R., & Caserta, J. (2004). The data warehouse ETL toolkit. John Wiley & Sons.

Moss, L. T., & Atre, S. (2003). Business intelligence roadmap: the complete project lifecycle for decision-support applications. Addison-Wesley Professional.

Nazar, M. et al.( 2020).Critical Discourse in Online News of Nadim Makarim's Statement in Covid-19 Case (Model Teun A. Van Dijk). Budapest International Research and Critics Institute-Journal (BIRCI-Journal). P.5623-5631

Nyanga, C., Pansiri, J., & Chatibura, D. (2019). Enhancing competitiveness in the tourism industry through the use of business intelligence: A literature review. Journal of Tourism Futures.

Orsenigo, C., & Vercellis, C. (2009). Multicategory classification via discrete support vector machines. Computational Management Science, 6(1), 101–114.

Rezkiani, R., Indrajit, R. E., & Fauzy, M. (2017). Implementasi Konsep Bussiness Intelligence Dalam Strategi Pemasaran Public Training Pada PT. Zigot Mediatama. Prosiding Semnastek. jurnal.umj.ac.id/index.php/semnastek

Saputra, A. S. (2021). Pengaruh Teknologi Informasi Pada Koperasi Di Era Industri 4.0. Transekonomika: Akuntansi, Bisnis Dan Keuangan, 1(5), 505–510. https://doi.org/https://doi.org/10.55047/transekonomika.v1i5.77

Siregar, R. E. (2021). Pengaruh Kecerdasan Intelektual Terhadap Efektifitas Kerja Pegawai. Transekonomika: Akuntansi, Bisnis Dan Keuangan, 1(2), 141–151. https://doi.org/https://doi.org/10.55047/transekonomika.v1i2.29

Sugianti, N., & Anwar, K. U. S. (2021). Pengaruh Masa Pandemi Covid 19 Terhadap Wirausaha Kecil Di Indonesia. Transekonomika: Akuntansi, Bisnis Dan Keuangan, 1(4), 321–326. https://doi.org/https://doi.org/10.55047/transekonomika.v1i4.57

Trujillo, J., & Luján-Mora, S. (2003). A UML based approach for modeling ETL processes in data warehouses. International Conference on Conceptual Modeling, 307–320.

Turban, E. (2007). Decicion Support System and Intelligent Systems. Penerbit: Andi, Yogyakarta.

Ningrum, P. et al. (2020). The Potential of Poverty in the City of Palangka Raya: Study SMIs Affected Pandemic Covid 19. Budapest International Research and Critics Institute Journal (BIRCI-Journal). P. 1626-1634




DOI: https://doi.org/10.33258/birci.v5i2.4786

Article Metrics

Abstract view : 67 times
PDF - 33 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.