Comparative Analysis of Arima Model and Exponential Smoothing in Predicting Inventory in Automotive Companies
Abstract
Forecasting is an activity to predict future events by using and considering data from the past. Forecasting is an important tool in effective and efficient planning. So that demand forecasting can be predicted and the amount of inventory can be determined in order to anticipate the number of varied and fluctuating demand. In order to obtain good forecast results, a forecasting method is used that can predict seasonal data. This study aims to determine the best forecasting model using ARIMA and exponential smoothing methods and to compare the forecasting results with the two methods in order to obtain the best method. Data on the number of requests for cars PT. Suzuki Indomobil Motor 2017 – 2019 is data that contains seasonal patterns so that ARIMA and Holt-Winters exponential smoothing can be used. Data obtained by means of documentation with secondary data collection and literature study. The results show that PT Suzuki Indomobil Motor is more appropriate to use the Holt-Winters Additive exponential smoothing method because the resulting error rate is smaller.
Keywords
Full Text:
PDFReferences
Ansari, T. (2019)Reminding State Owned Enterprises (BUMN) Management Using the Principle of ’Business Judgment Rule’: A Preliminary Note. Budapest International Research and Critics Institute-Journal (BIRCI-Journal). P. 27-38
Dharmesta, A. M., & Susanto, N. (2016). Peramalan Perencanaan Produksi Terak Dengan Metode Exponential Smoothing With Trend Pada Pt. Semen Indonesia (Persero) Tbk. Studi Teknik Industri.
Hayuningtyas, R. Y. (2017). Peramalan Persediaan Barang Menggunakan Metode Weighted Moving Average Dan Metode Double Exponential Smoothing. Jurnal Pilar Nusa Mandiri Vol. 13, No. 2.
Jayanti, N. K., & et al. (2015). Penerapan Metode Triple Exponential Smoothing pada Sistem Peramalan Penentuan Stok Obat. Jurnal Sistem Dan Informatika.
Octavia, T., & dkk. (2013). Peramalan Stok Barang Untuk Membantu Pengambilan Keputusan Pembelian Barang Pada Toko Bangunan Xyz Dengan Metode Arima. Seminar Nasional Informatika UPN ”Veteran” Yogyakarta.
Rahmadayanti, R., & et al. (2015). Perbandingan Keakuratan Metode Autoregressive Integrated Moving Average (ARIMA) dan Exponential Smoothing pada Penjualan Semen di PT. Sinar Abadi. Jurnal Rekursif.
Raphella, S. A., Nathan, S. G., & Chitra, G. (2014). Inventory Management-A Case Study. International Journal of Emerging Research in Management &Technology ISSN, 2278- 9359.
Safitri, T., & et al. (2017). Perbandingan Peramalan Menggunakan Metode Eksponensial Holt-Winters Smoothing Dan Arima. Unnes Journal of Mathematics.
Sentosa, E.,et al. (2017). Pengaruh Kualitas Bahan Baku, Proses Produksi Dan Kualitas Tenaga Kerja Terhadap Kualitas Produk Pada Pt Delta Surya Energy Di Bekasi. Jurnal Ilmu Manajemen Universitas Persada Indonesia Y.A.I.
Shah, M. et al. (2020). The Development Impact of PT. Medco E & P Malaka on Economic Aspects in East Aceh Regency. Budapest International Research and Critics Institute-Journal (BIRCI-Journal). P. 276-286.
Sugiyono. (2015). Metode Penelitian dan Pengembangan (Research and Deveploment / R&D). Bandung: Alfabeta.
Thoplan, Ruben. (2014). Simple v/s Sophisticated Methods of Forecasting for Mauritius Monthly Tourist Arrival Data. International Journal of Statistics and Applications. 4(5): 217-223.
Wardah, S., & Iskandar. (2016). ANALISIS PERAMALAN PENJUALAN PRODUK KERIPIK PISANG. Jurnal Teknik Industri, Vol. XI, No. 3.
Wijayanti, R. (2018). Pengendalian Persediaan Bahan Baku Dan Peramalan Penjualan Produk Terhadap Pencapaian Laba Perusahaan. Jurnal PPKM I.
DOI: https://doi.org/10.33258/birci.v5i1.3707
Article Metrics
Abstract view : 157 timesPDF - 94 times
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.