Rumapities and Social Sciences

ISSN 2015-3076 Online) ISSN 2015-1715 (Print)

Impact of Circuit Training Variations on Muscle Endurance, Cardiovascular Endurance, and Decreased Body Fat

Anandiaz Iman Santoso

Universitas Pendidikan Indonesia diaz.lfc@gmail.com

Abstract

In the modern era like today, the tight schedule of matches makes physical trainers have to mix programs in such a way as to prepare their athletes for maximum performance, often not enough time is available to develop each of these elements optimally. The purpose of this study was to determine whether there was a significant difference between SR-Circuit Training and SO-Circuit Training on muscle endurance, cardiovascular endurance, and decreased body fat. The research method used in this research is the experimental method. This method is used on the basis of the consideration that the nature of experimental research is to try something to determine the effect of a treatment or treatment. The results showed that there was a significant difference between SR-Circuit Training and SO-Circuit Training on muscle endurance, cardiovascular endurance, and decreased body fat.

I. Introduction

In the modern era like today, the tight schedule of matches makes physical coaches have to formulate programs in such a way as to prepare their athletes for maximum performance, often there is not enough time to develop each of these elements optimally. However, often the time available to prepare athletes physically ahead of a game is only 1-2 months. Therefore, if the available time is too short, it is necessary to strive or find a training system that is good enough and can guarantee that athletes are in good physical condition to face the competition, a physical condition training system that can be used for this purpose is a system called circuit training. Circuit training is an exercise system that can develop simultaneously the overall fitness of the body (Harsono, 2018). Is also revealed in a 2019 study that showed an increase in the components of muscular endurance and endurance of field tennis athletes (Anandiaz, 2019). Organization must have a goal to be achieved by the organizational members (Niati et al., 2021). The success of leadership is partly determined by the ability of leaders to develop their organizational culture. (Arif, 2019).

In the era of the increasingly modern field tennis game now every player must have equally good attacking and defensive abilities. To be able to attack and defend equally well, every player must have the ability to have a good physical condition, especially if you want to become a professional field tennis player. Good movement is one thing that tennis players are very critical to have. Successful tennis players must always place the body quickly and hit well, as is known, the sport of field tennis is a sport whose characteristics change such as running short to the side, changing direction many times (Kovacs, 2011) Good movements or not this is also greatly influenced by the body composition of each tennis athlete himself, athletes who have high enough fat levels will

Keywords

circuit training; muscle endurance; cardiovascular endurance; loss of body fat

Rudapest Institute

make movements slow down and inefficient. This high-fat content also increases the risk of high injury (Martinez-Rodriguez et al., 2015).

Therefore, all field tennis players are required to have good physical conditions. Physical condition plays a very important role in efforts to achieve maximum achievements because the physical condition is considered a basic factor for a tennis player, as revealed by Harsono:

If the physical condition is good then, 1). There will be an increase in the number of capillaries to help (serve) muscle fibers thereby improving blood flow; 2). There will be an increase in the elements of cardiovascular endurance, muscle strength, joint flexibility, stamina, and speed so an athlete will not easily feel tired; 3). There will be a better economy of motion at practice time; 4). There will be a faster recovery in organ organs of the body after exercise; 5). There will be a rapid response from our body organisms if at any time such a response is required; 6). Able to practice technical and tactical skills longer and better; 7). Will experience less pain (soreness) in muscles, joints, and tendons; 8). Avoidance of mental fatigue; 9). Better self-confidence because he feels physically better prepared.

Based on the above, there are many advantages if a tennis player has the good physical condition. Elements of physical condition that must be considered are muscle endurance, cardiovascular endurance, and fat levels. Muscular endurance is the ability of muscles to contract to the stimuli of a prisoner for a long time.

Basic Strength:	+++	
1. Muscular Bal	lance	
2. Injury Prever	ntion	
Maximum Strength:		++
1. Hypertrophy		_
2. Neuromuscul	lar Adaptations	_
3. Intramuscula	r Coordination	_
Muscular Power	++++	
Muscular Endurance)	++++

Table 1. The main goals of strength training in tennis

Note: number of + symbols indicates the importance of the goal

The importance of this muscular endurance can see where there is often the case in one match of a player whose strokes are heavy in the initial set, but a decrease in the last set. This clearly illustrates that the endurance of the player's arm muscles is not trained enough because they are no longer able to hit heavily. So the muscular endurance of a tennis player plays an important role in matches where when players compete, they can show the same quality of strokes in set 5 with set 1.

Meanwhile, cardiovascular endurance or commonly referred to as VO2max is the body's ability to work for a long time without experiencing excessive fatigue after completing the work. In a field tennis match, the game lasts quite a long time, namely for 3-5 sets and the duration is often more than 2 hours (Reid & Schneiker, 2008) so every player is required to show good technical qualities during play, meaning that muscle endurance and cardiovascular endurance are important factors in fighting fatigue while playing and variables that make a tennis player quickly recover the state of the body to go to high performance during training or matches(Genevois, 2019). Therefore a trainer must form aerobic and anaerobic power.

Figure 1. HR variation during tennis match play (adapted from Baiget et al, 2015)

If referring to the discussion above, muscular endurance and cardiovascular endurance are very important in sports that demand achievement, especially in the field of tennis sport where each player in one match is required to show good technical qualities for 3-5 sets or with a duration of about more than 1-2 hours with the characteristics of a game that lasts with a high intensity of short duration (4-10 seconds) and repeatedly with break 10-20 seconds (Hoppe et al, 2014). However, the physical parameters above the weak are also determined by non-optimal fat levels, therefore in terms of fat levels, it is also very important for a tennis athlete to have optimal levels. Many exercise methods can be used to increase muscle endurance and cardiovascular endurance. Among them are *set systems* to increase muscle endurance and *intervals* to increase cardiovascular endurance.

The purpose of this study is to find out whether there are significant differences in SR-Circuit Training and SO-Circuit Training exercises on muscle endurance and to find out whether there are significant differences between SR-Circuit Training and SO-Circuit Training exercises on cardiovascular endurance and u to find out if there is a significant difference in SR-Circuit Training and SO-Circuit Training exercises on body fat loss.

II. Research Method

In a research method, it is necessary to establish a method that is appropriate and can help reveal a problem. The method in a study is a way that must be taken to achieve the goal, while in a study it is to reveal, describe and collect the results of problem-solving in certain ways by the procedures commonly used including historical, descriptive, and experimental.

The research method used in this study is experimental. This method is used based on the consideration that the nature of experimental research is to try something to find out the effect of the consequences of a treatment or treatment as mentioned (Frankael, 2011). In addition, the author wants to know the influence of free variables on the bound variables investigated or observed. Regarding this experimental method, Sugiyono stated that: "The experimental method can be interpreted as a research method used to find the influence of certain treatments on others under controlled conditions" (Sugiyono, 2012).

III. Result and Discussion

Data analysis is divided into two, namely descriptive analysis and comparative test analysis (comparative) to determine the effect of comparative variations in circuit training exercises on muscle endurance, cardiovascular endurance, and fat loss of junior field tennis athletes. The total sample that was subjected to this study was 5 people in each group. The first group was the one that used the SR-Circuit exercise, the second group used the SO-Circuit exercise, and group 3 was the control group.

			Ν	Jeans			
			R	Report			
C		Push Up	Push Up	Sit Up	Sit Up	Squat	Squat Jump
Group		Pre	Post	Pre	Post	Jump Pre	Post
	Mean	33.8000	39.8000	42.8000	46.8000	46.4000	51.6000
SR-	Std. Deviation	12.02913	12.63725	9.60208	9.60208	12.66096	11.01363
Circuit	Median	31.0000	37.0000	41.0000	45.0000	51.0000	56.0000
Training	Minimum	21.00	28.00	30.00	35.00	32.00	39.00
	Maximum	53.00	59.00	55.00	58.00	60.00	64.00
	Mean	16.8000	23.6000	31.4000	40.0000	29.2000	37.6000
SO-	Std. Deviation	9.93479	12.23928	4.61519	5.91608	8.67179	8.73499
Circuit	Median	14.0000	21.0000	31.0000	39.0000	31.0000	38.0000
Training	Minimum	8.00	13.00	26.00	33.00	15.00	24.00
	Maximum	32.00	42.00	37.00	47.00	37.00	47.00
	Mean	27.6000	30.4000	41.2000	42.6000	38.4000	40.2000
Control	Std. Deviation	7.70065	8.17313	5.26308	5.72713	4.92950	6.22093
Control	Median	30.0000	32.0000	40.0000	42.0000	38.0000	41.0000
	Minimum	15.00	18.00	35.00	35.00	32.00	33.00
	Maximum	34.00	40.00	48.00	50.00	45.00	48.00
	Mean	26.0667	31.2667	38.4667	43.1333	38.0000	43.1333
T (1	Std. Deviation	11.80476	12.44110	8.21903	7.35689	11.27576	10.35006
IUlai	Median	28.0000	30.0000	38.0000	42.0000	36.0000	41.0000
	Minimum	8.00	13.00	26.00	33.00	15.00	24.00
	Maximum	53.00	59.00	55.00	58.00	60.00	64.00

3.1 Output SPSS

Means

			Report		
Gre	ann	Vo2Max	Vo2Max	Pre Fat	Post Fat
Group		Pre	Post	Content	Content
SP Circuit	Mean	47.5600	53.8820	18.0600	14.4940
Training	Std. Deviation	7.69955	6.45418	4.56432	2.29993

	Median	50.8000	57.1000	17.5000	14.1700
	Minimum	34.60	43.80	13.40	12.10
	Maximum	53.50	59.13	22.80	17.20
	Mean	38.1400	42.4920	18.9560	18.2880
SO-Circuit	Std. Deviation	6.77739	6.80005	6.23239	5.84438
Training	Median	38.3000	43.5900	16.9800	16.7000
	Minimum	30.50	35.07	11.30	12.54
	Maximum	47.80	51.20	26.10	24.80
	Mean	45.8400	45.5860	17.3340	17.8440
Control	Std. Deviation	6.54240	6.60178	5.24626	4.94193
Control	Median	50.2000	49.5000	18.5100	19.3200
	Minimum	38.10	36.60	8.90	10.10
	Maximum	51.20	51.30	22.70	22.30
	Mean	43.8467	47.3200	18.1167	16.8753
	Std. Deviation	7.76309	7.89576	5.03840	4.61751
Total	Median	46.6000	49.5000	17.5000	16.5000
	Minimum	30.50	35.07	8.90	10.10
	Maximum	53.50	59.13	26.10	24.80

Explore Group

Tests of Normality				
	Crown	ilk		
	Group	Statistic	df	Itself.
	SR-Circuit Training	.930	5	.595
Push Up Pre	SO-Circuit Training	.900	5	.409
	Control	.864	5	.244
	SR-Circuit Training	.919	5	.521
Push Up Post	SO-Circuit Training	.893	5	.374
	Control	.967	5	.852
	SR-Circuit Training	.982	5	.945
Sit Up Pre	SO-Circuit Training	.951	5	.743
	Control	.963	5	.829
	SR-Circuit Training	.945	5	.699
Sit Up Post	SO-Circuit Training	.941	5	.672
	Control	.994	5	.991
	SR-Circuit Training	.874	5	.285
Squat Jump Pre	SO-Circuit Training	.885	5	.330
	Control	.998	5	.998
	SR-Circuit Training	.885	5	.331
Squat Jump Post	SO-Circuit Training	.944	5	.696
	Control	.952	5	.754
VolMax Dro	SR-Circuit Training	.819	5	.115
v oziviax pre	SO-Circuit Training	.971	5	.882

	Control	.757	5	.065
	SR-Circuit Training	.853	5	.204
Vo2Max Post	SO-Circuit Training	.933	5	.615
	Control	.836	5	.153
	SR-Circuit Training	.841	5	.168
Pre Fat Content	SO-Circuit Training	.921	5	.535
	Control	.922	5	.543
	SR-Circuit Training	.896	5	.390
Post Fat Content	SO-Circuit Training	.847	5	.184
	Control	.902	5	.422

T-Test (SR-Circuit Training)

	Paired Samples Statistics							
		Mean	Ν	Std. Deviation	Std. Error Mean			
Dain 1	Push Up Pre	33.8000	5	12.02913	5.37959			
Pair I	Push Up Post	39.8000	5	12.63725	5.65155			
Dair 2	Sit Up Pre	42.8000	5	9.60208	4.29418			
Fall 2	Sit Up Post	46.8000	5	9.60208	4.29418			
Dair 2	Squat Jump Pre	46.4000	5	12.66096	5.66216			
Fall 5	Squat Jump Post	51.6000	5	11.01363	4.92544			
Dair 1	Vo2MaxPre	47.5600	5	7.69955	3.44334			
rall 4	Vo2MaxPost	53.8820	5	6.45418	2.88640			
Doir 5	Pre Fat Content	18.0600	5	4.56432	2.04123			
Pair 5	Post Fat Content	14.4940	5	2.29993	1.02856			

	Paired Samples Correlations						
		Ν	Correlation	Itself.			
Pair 1	Push Up Pre & Push Up Post	5	.980	.003			
Pair 2	Sit Up Pre & Sit Up Post	5	.986	.002			
Pair 3	Squat Jump Pre & Squat Jump Post	5	.998	.000			
Pair 4	Vo2MaxPre & Vo2MaxPost	5	.976	.004			
Pair 5	Pre Fat Content & Post Fat Content	5	.995	.000			

			Paired	l Samples	Test				
			Paire	ed Differe	nces				
				Std.	95% Co	nfidence			Sig.
		Mean	Std. Deviation	Error	Interva Diffe	l of the rence	t	df	(2- tailed)
				Mean	Lower	Upper			,
Pair	Push Up Pre-	-	2 54051	1 1/018	-	-	-	4	006
1	Push Up Post	6.00000	2.34931	1.14018	9.16563	2.83437	5.262	4	.000
Pair	Sit Up Pre –	-	1 50111	70711	-	-	-	4	005
2	Sit Up Post	4.00000	1.30114	./0/11	5.96324	2.03676	5.657	4	.005

Pair 3	Squat Jump Pre – Squat Jump Post	5.20000	1.78885	.80000	- 7.42116	- 2.97884	- 6.500	4	.003
Pair 4	Vo2Max Pre - Vo2Max Post	- 6.32200	1.98361	.88710	- 8.78498	- 3.85902	- 7.127	4	.002
Pair 5	Pre Fat Content – Post Fat Content	3.56600	2.28895	1.02365	.72390	6.40810	3.484	4	.025

T-Test (SO-Circuit Training)

	Paired Samples Statistics						
		Mean	N	Std. Deviation	Std. Error Mean		
Dair 1	Push Up Pre	16.8000	5	9.93479	4.44297		
Pair I	Push Up Post	23.6000	5	12.23928	5.47357		
Doin 2	Sit Up Pre	31.4000	5	4.61519	2.06398		
Pair 2	Sit Up Post	40.0000	5	5.91608	2.64575		
Dair 2	Squat Jump Pre	29.2000	5	8.67179	3.87814		
Fall 5	Squat Jump Post	37.6000	5	8.73499	3.90640		
Doir 1	Vo2Max Pre	38.1400	5	6.77739	3.03094		
rall 4	Vo2Max Post	42.4920	5	6.80005	3.04107		
Doin 5	Pre Fat Content	18.9560	5	6.23239	2.78721		
Pall 3	Post Fat Content	18.2880	5	5.84438	2.61368		

	Paired Samples Correlations					
		Ν	Correlation	Itself.		
Pair 1	Push Up Pre & Push Up Post	5	.998	.000		
Pair 2	Sit Up Pre & Sit Up Post	5	.998	.000		
Pair 3	Squat Jump Pre & Squat Jump Post	5	.991	.001		
Pair 4	Vo2Max Pre & Vo2Max Post	5	.950	.013		
Pair 5	Pre Fat Content & Post Fat Content	5	.976	.004		

			Pair	red Samp	les Test				
			Paire	d Differe	nces				
		Mean	Std. Deviation	Std. Error Moon	95% Con Interval Differ	fidence of the ence	t	df	Sig. (2- tailed)
				wiean –	Lower	Upper			
Pair 1	Push Up Pre – Push Up Post	- 6.8000	0 2.38747	1.06771	-9.76443	3.83557	-6.369	4	.003

Pair 2	Sit Up Pre – Sit Up Post	- 8.60000	1.34164	.60000	- 10.26587	- 6.93413	- 14.333	4	.000
Pair 3	Squat Jump Pre – Squat Jump Post	8.40000	1.14018	.50990	-9.81571	- 6.98429	- 16.474	4	.000
Pair 4	Vo2Max Pre - Vo2Max Post	4.35200	2.15589	.96414	-7.02889	- 1.67511	-4.514	4	.011
Pair 5	Pre Fat Content – Post Fat Content	.66800	1.37612	.61542	-1.04068	2.37668	1.085	4	.339

T-Test (Control)

		Paired Samp	les Stat	istics	
		Mean	Ν	Std. Deviation	Std. Error Mean
Dair 1	Push Up Pre	27.6000 5		7.70065	3.44384
Fall I	Push Up Post	30.4000	5	8.17313	3.65513
	Sit Up Pre	41.2000	5	5.26308	2.35372
Pair 2	Sit Up Post	42.6000	5	5.72713	2.56125
Dair 2	Squat Jump Pre	38.4000	5	4.92950	2.20454
Fall 5	Squat Jump Post	40.2000	5	6.22093	2.78209
Dair 1	Vo2Max Pre	45.8400	5	6.54240	2.92585
rall 4	Vo2Max Post	45.5860	5	6.60178	2.95241
Dair 5	Pre Fat Content	17.3340	5	5.24626	2.34620
ralf 3	Post Fat Content	17.8440	5	4.94193	2.21010

Paired Samples Correlations									
		Ν	Correlation	Itself.					
Pair 1	Push Up Pre & Push Up Post	5	.972	.005					
Pair 2	Sit Up Pre & Sit Up Post	5	.990	.001					
Pair 3	Squat Jump Pre & Squat Jump Post	5	.975	.005					
Pair 4	Vo2Max Pre & Vo2Max Post	5	.983	.003					
Pair 5	Pre Fat Content & Post Fat Content	5	.967	.007					

Paired Samples Test

			Paire	d Differ	ences						
		Mean	Std. Deviation	Std. Error Moor	95% Co Interva Diffe	95% Confidence Interval of the Difference		95% Confidence Interval of the Difference		df	Sig. (2- tailed)
				Mean	Lower	Upper					
Pair 1	Push Up Pre – Push Up Post	2.80000	1.92354	.86023	- 5.18839	41161	3.255	4	.031		
Pair 2	Sit Up Pre – Sit Up Post	- 1.40000	.89443	.40000	2.51058	28942	- 3.500	4	.025		
Pair 3	Squat Jump Pre – Squat Jump Post	- 1.80000	1.78885	.80000	4.02116	.42116	2.250	4	.088		
Pair 4	Vo2Max Pre - Vo2Max Post	.25400	1.22845	.54938	- 1.27132	1.77932	.462	4	.668		
Pair 5	Pre Fat Content – Post Fat Content	51000	1.34203	.60017	2.17635	1.15635	850	4	.443		

Oneway

		ANOV	A			
		Sum of Squares	df	Mean Square	F	Itself.
Duch Un Dro	Between Groups	740.133	2	370.067	3.668	.057
Push Op Pie	Within Groups	1210.800	12	100.900		
	Total	1950.933	14			
Duch Up Doct	Between Groups	661.733	2	330.867	2.638	.112
Push Op Post	Within Groups	1505.200	12	125.433		
	Total	2166.933	14			
C'4 LLa Dua	Between Groups	380.933	2	190.467	4.047	.045
Sit Op Pre	Within Groups	564.800	12	47.067		
	Total	945.733	14			
Cit Up Doct	Between Groups	117.733	2	58.867	1.104	.363
Sit Op Post	Within Groups	640.000	12	53.333		
	Total	757.733	14			
Squat Jump Dra	Between Groups	740.800	2	370.400	4.277	.040
Squat Jump Pre	Within Groups	1039.200	12	86.600		
	Total	1780.000	14			

Carried Learning De et	Between Groups	554.533	2	277.267	3.520	.063
Squat Jump Post	Within Groups	945.200	12	78.767		
	Total	1499.733	14			
	Between	251.641	2	125.821	2.550	.119
Vo2Max Pre	Within Groups	592.076	12	49.340		
	Total	843.717	14			
	Between Groups	346.881	2	173.440	3.957	.048
VOZINIAX POSI	Within Groups	525.922	12	43.827		
	Total	872.803	14			
Dro Fot Contont	Between Groups	6.601	2	3.301	.114	.894
Fle Fat Coment	Within Groups	348.796	12	29.066		
	Total	355.397	14			
Doct Fat Contant	Between Groups	43.023	2	21.512	1.010	.393
rost rat Content	Within Groups	255.476	12	21.290		
	Total	298.500	14			

Post Hoc Tests

Multiple Comparisons									
			LSD						
Dependent	(I) Choung	(I) Croups	Mean Difference (I	Std.	Itaalf	95% Co Inte	nfidence rval		
Variable	(1) Groups	(J) Groups	J)	Error	itsen	Lower Bound	Upper Bound		
	SR-Circuit Training	SO-Circuit Training	17.00000^{*}	6.35295	.020	3.1581	30.8419		
Duck He Dec		Control	6.20000	6.35295	.348	-7.6419	20.0419		
	SO-Circuit Training	SR-Circuit Training	-17.00000*	6.35295	.020	-30.8419	-3.1581		
r ush op rie		Control	-10.80000	6.35295	.115	-24.6419	3.0419		
	Control	SR-Circuit Training	-6.20000	6.35295	.348	-20.0419	7.6419		
	Control	SO-Circuit Training	10.80000	6.35295	.115	-3.0419	24.6419		
	SR-Circuit	SO-Circuit Training	16.20000^{*}	7.08331	.041	.7668	31.6332		
Push Up Post	Training	Control	9.40000	7.08331	.209	-6.0332	24.8332		
	SO-Circuit Training	SR-Circuit Training	-16.20000*	7.08331	.041	-31.6332	7668		

		Control	-6.80000	7.08331	.356	-22.2332	8.6332
	Control	SR-Circuit Training	-9.40000	7.08331	.209	-24.8332	6.0332
	Control	SO-Circuit Training	6.80000	7.08331	.356	-8.6332	22.2332
	SR-Circuit	SO-Circuit Training	11.40000*	4.33897	.022	1.9462	20.8538
	Training	Control	1.60000	4.33897	.719	-7.8538	11.0538
	SO-Circuit	SR-Circuit Training	-11.40000*	4.33897	.022	-20.8538	-1.9462
Sit Up Pre	Training	Control	-9.80000*	4.33897	.043	-19.2538	3462
		SR-Circuit Training	-1.60000	4.33897	.719	-11.0538	7.8538
	Control	SO-Circuit Training	9.80000*	4.33897	.043	.3462	19.2538
	SR-Circuit	SO-Circuit Training	6.80000	4.61880	.167	-3.2635	16.8635
	Training	Control	4.20000	4.61880	.381	-5.8635	14.2635
	SO-Circuit Training	SR-Circuit Training	-6.80000	4.61880	.167	-16.8635	3.2635
Sit Op Post		Control	-2.60000	4.61880	.584	-12.6635	7.4635
		SR-Circuit Training	-4.20000	4.61880	.381	-14.2635	5.8635
	Control	SO-Circuit Training	2.60000	4.61880	.584	-7.4635	12.6635
	SR-Circuit	SO-Circuit Training	17.20000*	5.88558	.013	4.3764	30.0236
	Training	Control	8.00000	5.88558	.199	-4.8236	20.8236
Squat Jump Dra	SO-Circuit	SR-Circuit Training	-17.20000*	5.88558	.013	-30.0236	-4.3764
Squat Jump Pre	Training	Control	-9.20000	5.88558	.144	-22.0236	3.6236
	Control	SR-Circuit Training	-8.00000	5.88558	.199	-20.8236	4.8236
	Control	SO-Circuit Training	9.20000	5.88558	.144	-3.6236	22.0236
	SR-Circuit	SO-Circuit Training	14.00000*	5.61308	.028	1.7701	26.2299
Squat Jump Post	Training	Control	11.40000	5.61308	.065	8299	23.6299
	SO-Circuit Training	SR-Circuit Training	-14.00000*	5.61308	.028	-26.2299	-1.7701

		Control	-2.60000	5.61308	.652	-14.8299	9.6299
	Cantral	SR-Circuit Training	-11.40000	5.61308	.065	-23.6299	.8299
	Control	SO-Circuit Training	2.60000	5.61308	.652	-9.6299	14.8299
	SR-Circuit	SO-Circuit Training	9.42000	4.44251	.055	2594	19.0994
	Training	Control	1.72000	4.44251	.705	-7.9594	11.3994
Vo2Mer Dre	SO-Circuit	SR-Circuit Training	-9.42000	4.44251	.055	-19.0994	.2594
VOZIVIAX FIE	Training	Control	-7.70000	4.44251	.109	-17.3794	1.9794
	Control	SR-Circuit Training	-1.72000	4.44251	.705	-11.3994	7.9594
	Control	SO-Circuit Training	7.70000	4.44251	.109	-1.9794	17.3794
	SR-Circuit	SO-Circuit Training	11.39000*	4.18697	.019	2.2674	20.5126
Vo2May Doct	Training	Control	8.29600	4.18697	.071	8266	17.4186
	SO-Circuit Training	SR-Circuit Training	-11.39000*	4.18697	.019	-20.5126	-2.2674
VOZIVIAX POSI		Control	-3.09400	4.18697	.474	-12.2166	6.0286
	Cantural	SR-Circuit Training	-8.29600	4.18697	.071	-17.4186	.8266
	Control	SO-Circuit Training	3.09400	4.18697	.474	-6.0286	12.2166
	SR-Circuit	SO-Circuit Training	89600	3.40977	.797	-8.3252	6.5332
	Training	Control	.72600	3.40977	.835	-6.7032	8.1552
Dro Eat Contant	SO-Circuit	SR-Circuit Training	.89600	3.40977	.797	-6.5332	8.3252
Fle Fat Content	Training	Control	1.62200	3.40977	.643	-5.8072	9.0512
	Control	SR-Circuit Training	72600	3.40977	.835	-8.1552	6.7032
	Control	SO-Circuit Training	-1.62200	3.40977	.643	-9.0512	5.8072
	SR-Circuit	SO-Circuit Training	-3.79400	2.91820	.218	-10.1522	2.5642
Post Fat Content	Training	Control	-3.35000	2.91820	.273	-9.7082	3.0082
	SO-Circuit Training	SR-Circuit Training	3.79400	2.91820	.218	-2.5642	10.1522

	Control	.44400	2.91820	.882	-5.9142	6.8022
Control	SR-Circuit Training	3.35000	2.91820	.273	-3.0082	9.7082
Control	SO-Circuit Training	44400	2.91820	.882	-6.8022	5.9142

*. The mean difference is significant at the 0.05 level.

Means

			Repo	rt		
Gı	oup	Pushup Difference	SitUp Difference	Selisih Squat Jump	Vo2Max Difference	Difference in Fat Content
	Mean	6.0000	4.0000	5.2000	6.3220	3.5660
SR-	Std. Deviation	2.54951	1.58114	1.78885	1.98361	2.28895
Circuit	Median	6.0000	4.0000	5.0000	5.6300	3.3300
Training	Minimum	2.00	2.00	3.00	4.50	1.30
	Maximum	9.00	6.00	7.00	9.20	6.20
	Mean	6.8000	8.6000	8.4000	4.3520	.6680
SO-	Std. Deviation	2.38747	1.34164	1.14018	2.15589	1.37612
Circuit	Median	7.0000	8.0000	8.0000	3.4000	.5000
Training	Minimum	4.00	7.00	7.00	2.69	-1.24
	Maximum	10.00	10.00	10.00	8.00	2.50
	Mean	2.8000	1.4000	1.8000	2540	5100
Control	Std. Deviation	1.92354	.89443	1.78885	1.22845	1.34203
Control	Median	2.0000	2.0000	3.0000	7000	8100
	Minimum	1.00	.00	-1.00	-1.50	-2.15
	Maximum	6.00	2.00	3.00	1.20	1.30
	Mean	5.2000	4.6667	5.1333	3.4733	1.2413
Total	Std. Deviation	2.78260	3.30944	3.15926	3.31949	2.38651
Total	Median	6.0000	4.0000	5.0000	3.4000	1.3000
	Minimum	1.00	.00	-1.00	-1.50	-2.15
	Maximum	10.00	10.00	10.00	9.20	6.20

Oneway

		ANOVA				
		Sum of Squares	df	Mean Square	F	Itself.
Pushup Difference	Between Groups	44.800	2	22.400	4.226	.041
	Within Groups	63.600	12	5.300		
	Total	108.400	14			

SitUp	Between Groups	132.933	2	66.467	39.098	.000
Difference	Within Groups	20.400	12	1.700		
	Total	153.333	14			
Squats	Between Groups	108.933	2	54.467	21.221	.000
DifferenceJump	Within Groups	30.800	12	2.567		
	Total	139.733	14			
Vo2Max Difference	Between Groups	113.900	2	56.950	16.930	.000
	Within Groups	40.367	12	3.364		
	Total	154.267	14			
Difference in Fat Content	Between Groups	44.000	2	22.000	7.387	.008
	Within Groups	35.736	12	2.978		
	Total	79.736	14			

Post Hoc Tests							
Multiple Comparisons							
			LSD				
Dependent Variable	(I) Groups	(J)	Mean Difference (I-J) Std. Error	Std.	T4 10	95% Confidence Interval	
		Groups		115011.	Lower Bound	Upper Bound	
	SR- Circuit	SO- Circuit Training	80000	1.45602	.593	-3.9724	2.3724
	Training	Control	3.20000^{*}	1.45602	.048	.0276	6.3724
Pushup	SO- Circuit Training	SR- Circuit Training	.80000	1.45602	.593	-2.3724	3.9724
Difference		Control	4.00000^{*}	1.45602	.018	.8276	7.1724
	Control	SR- Circuit Training	-3.20000*	1.45602	.048	-6.3724	0276
		SO- Circuit Training	-4.00000*	1.45602	.018	-7.1724	8276
SitUp Difference	SR- Circuit	SO- Circuit Training	-4.60000*	.82462	.000	-6.3967	-2.8033
	Training	Control	2.60000^{*}	.82462	.008	.8033	4.3967
	SO- Circuit Training	SR- Circuit Training	4.60000*	.82462	.000	2.8033	6.3967
		Control	$\overline{7.20000^{*}}$.82462	.000	5.4033	8.9967

		SR- Circuit	-2.60000*	.82462	.008	-4.3967	8033
	Control	SO- Circuit	-7.20000*	.82462	.000	-8.9967	-5.4033
	SR- Circuit	SO- Circuit Training	-3.20000*	1.01325	.008	-5.4077	9923
	Training	Control	3.40000*	1.01325	.006	1.1923	5.6077
Squate	SO- Circuit	SR- Circuit Training	3.20000*	1.01325	.008	.9923	5.4077
DifferenceJump	Training	Control	6.60000^{*}	1.01325	.000	4.3923	8.8077
I	Control	SR- Circuit Training	-3.40000*	1.01325	.006	-5.6077	-1.1923
		SO- Circuit Training	-6.60000*	1.01325	.000	-8.8077	-4.3923
	SR- Circuit Training	SO- Circuit Training	1.97000	1.15998	.115	5574	4.4974
	manning	Control	6.57600*	1.15998	.000	4.0486	9.1034
Vo2Max	SO- Circuit	SR- Circuit Training	-1.97000	1.15998	.115	-4.4974	.5574
Difference	Training	Control	4.60600^{*}	1.15998	.002	2.0786	7.1334
	Control	SR- Circuit Training	-6.57600*	1.15998	.000	-9.1034	-4.0486
		SO- Circuit Training	-4.60600*	1.15998	.002	-7.1334	-2.0786
	SR- Circuit Training	SO- Circuit Training	2.89800*	1.09142	.021	.5200	5.2760
Difference in Fat Content		Control	4.07600^{*}	1.09142	.003	1.6980	6.4540
	SO- Circuit Training	SR- Circuit Training	-2.89800*	1.09142	.021	-5.2760	5200
	raining	Control	1.17800	1.09142	.302	-1.2000	3.5560
	Control	SR- Circuit Training	-4.07600*	1.09142	.003	-6.4540	-1.6980
		SO- Circuit Training	-1.17800	1.09142	.302	-3.5560	1.2000

3.2 Analysis Results

a. Descriptive Analysis

This analysis is used to find out an overview of research data. This analysis is in the form of average values, standard deviations, the largest values, and the smallest values in each group. The following is an overview of the results of muscle endurance, cardiovascular endurance, and fat levels of field tennis athletes using SR- Circuit training and SO-Circuit training exercises.

Mucaular Endurance	SR-Circuit Training	SO-Circuit Training	Control	
	n=5	n=5	n=5	
Push Up				
Initial Test				
Mean±SD	33.8±12.0	16.8±9.9	27.6 ± 7.7	
Median (Min-Max)	31.0 (21.0-53.0)	14.0 (8.0-32.0)	30.0 (15.0-34.0)	
Final Test				
Mean±SD	39.8±12.6	23.6±12.2	30.4 ± 8.2	
Median (Min-Max)	37.0 (28.0-59.0)	21.0 (26.0-37.0)	32.0 (18.0-48.0)	
Difference				
Mean±SD	$6.0{\pm}2.5$	6.8 ± 2.4	$2.8{\pm}1.9$	
Median (Min-Max)	6.0 (2.0-9.0)	7.0 (4.0-10.0)	2.0 (1.0-6.0)	
Sit Up				
Initial Test				
Mean±SD	42.8±9.6	31.4±4.6	41.2±5.3	
Median (Min-Max)	41.0 (30.0-55.0)	31.0 (26.0-37.0)	40.0 (35.0-48.0)	
Final Test				
Mean±SD	46.8±9.6	40.0 ± 5.9	42.6 ± 5.7	
Median (Min-Max)	45.0 (35.0-58.0)	39.0 (33.0-47.0)	42.0 (35.0-50.0)	
Difference				
Mean±SD	$4.0{\pm}1.6$	8.6±1.3	$1.4{\pm}0.9$	
Median (Min-Max)	4.0 (2.0-6.0)	8.0 (7.0-10.0)	2.0 (0.0-2.0)	
Squat Jump				
Initial Test				
Mean±SD	46.4±12.7	29.2±8.7	38.4±4.9	
Median (Min-Max)	51.0 (32.0-60.0)	31.0 (15.0-37.0)	38.0 (32.0-45.0)	
Final Test				
Mean±SD	51.6±11.0	37.6±8.7	40.2 ± 6.2	
Median (Min-Max)	56.0 (39.0-64.0)	38.0 (24.0-47.0)	41.0 (33.0-48.0)	
Difference				
Mean±SD	5.2±1.8	8.4±1.1	1.8±1.8	
Median (Min-Max)	5.0 (3.0-7.0)	8.0 (7.0-10.0)	3.0 (-1.0-3.0)	

Source: Research Data, 2022

Based on the table above, you can see an overview of the endurance of the court tennis muscles tested by doing push-ups, sit-ups, and squat jumps. When conducting the initial push-up test for the SR-Circuit Training group, it received a mean score of 33.8± 12.0 with a minimum value of 21.0 and a maximum of 53.0, while in the SO-Circuit Training group it got a mean score of 16.8± 9.9 with a minimum value of 8.0 and a maximum of 32.0, and in the control group, it got a mean score of 27.6± 7.7 with a minimum value of 15.0 and a maximum of 34.0. when viewed from the mean value in the initial test of push-up exercises, the mean value of SR-Circuit Training is greater than Dick and the control group is greater than SO-Circuit Training and (SR >Control>SO). Then in the final test, push-up training in the SR-Circuit Training group got a mean score of 39.8± 12.6 with a minimum score of 28.0 and a maximum of 59.0, while the SO-Circuit Training group got a mean score of 23.6± 12.2 with a minimum value of 26.0 and a maximum of 37.0, and in the control group got a mean score of 30.4 ± 8.2 with a minimum score of 18.0 and a maximum of 48.0. when viewed from the mean value in the final test of push-up exercises, the mean value of SR-Circuit Training is greater than Dick and the control group is greater than SO-Circuit Training and (SR >Control>SO). If you compare the mean values in the initial test and the final test on push-up exercises, there is a difference in the increase in scores in each group. The SR-Circuit Training group had an increased mean value of 6.0, while in the SO-Circuit Training group the mean value increased by 6.8, and in the control group, the mean value increased by 2.8.

Bleep Test	SR-Circuit Training	SO-Circuit Training	Control	
-	n=5	n=5	n=5	
Initial Test				
Mean±SD	47.6±7.7	38.1±6.8	45.8±6.5	
Median (Min- Max)	50.8 (34.6-53.5)	38.3 (30.5-47.8)	50.2 (38.1-51.2)	
Final Test				
Mean±SD	53.9±6.5	42.5±6.8	45.6±6.6	
Median (Min- Max)	57.1 (43.8-59.1)	43.6 (35.1-51.2)	49.5 (36.6-51.3)	
Difference				
Mean±SD	6.3±2.0	4.4±2.2	-0.3±1.2	
Median (Min- Max)	5.6 (4.5-9.2)	3.4 (2.7-8.0)	-0.7 (-1.5-1.2)	

 Table 3. Cardiovascular Endurance Overview of Field Tennis Athletes

Source: Research Data, 2022

Based on the table above, you can see a picture of the cardiovascular endurance of field tennis athletes with a bleep test. When conducting the initial test, the bleep test for the SR-Circuit Training group got a mean score of 47.6 ± 7.7 with a minimum value of 34.6 and a maximum of 53.5, while in the SO-Circuit Training group it got a mean score of 38.1 ± 6.8 with a minimum value of 30.5 and a maximum of 47.8, and in the control group, it got a mean score of 45.8 ± 6.5 with a minimum value of 38.1 and a maximum of 51.2. When viewed from the mean value in the initial test on the bleep test, the mean value of SR-Circuit Training is greater than the dick group and the control group is greater than so-circuit training and (SR >Control>SO). Then in the final test, the bleep test in the SR-Circuit Training group got a mean score of 53.9 ± 6.5 with a minimum value of 43.8 and a

maximum of 59.1, while the SO-Circuit Training group got a mean score of 42.5 ± 6.8 with a minimum score of 35.1 and a maximum of 51.2, and in the control group got a mean score of 45.6 ± 6.6 with a minimum score of 36.6 and a maximum of 51.3. When viewed from the mean value in the final test bleep test, the mean value of SR-Circuit Training is greater than the dick group and the control group is greater than SO-Circuit Training and (SR >Control>SO). When comparing the mean values in the initial test and the final test on the Bleep test, there was a difference in the increase in scores in the SR-Circuit training and SO-Circuit training groups while in the control group there was a decrease. The SR-Circuit Training group had an increased mean value of 6.3, while in the SO-Circuit Training group the mean value increased by 4.4, and in the control group, the mean value decreased by 0.3.

Table 4. Overview of 1 at Levels of 1 feld Tellins Athletes						
Fat Content (%)	SR-Circuit Training	SO-Circuit Training	Control			
	n=5	n=5	n=5			
Initial Test						
Mean±SD	18.1±4.6	19.0±6.2	17.3 ± 5.2			
Median (Min-Max)	17.5 (13.4-22.8)	17.0 (11.3-26.1)	18.5 (8.9-22.7)			
Final Test						
Mean±SD	14.5 ± 2.3	18.3±5.8	17.8 ± 4.9			
Median (Min-Max)	14.2 (12.1-17.2)	16.7 (12.5-24.8)	19.3 (10.1-22.3)			
Difference						
Mean±SD	3.6±2.3	0.7±1.4	-0.5±1.3			
Median (Min-Max)	3.3 (1.3-6.2)	0.5 (-1.2-2.5)	-0.8 (-2.2-1.3)			

Table 4. Overview of Fat Levels of Field Tennis Athletes

Source: Research Data, 2022

Based on the table above, you can see an overview of the fat content of court tennis athletes. When conducting the initial test, the fat content (%) for the SR-Circuit Training group received a mean score of 18.1 ± 4.6 with a minimum value of 13.4 and a maximum of 22.8, while in the SO-Circuit Training group it received a mean score of 19.0 ± 6.2 with a minimum value of 11.3 and a maximum of 26.1, and in the control group, it received a mean value of 17.3±5.2 with a minimum value of 8.9 and a maximum of 22.7. When viewed from the mean value in the initial test on the fat content, the mean value of SO-Circuit Training is greater than SR-Circuit Training and SR-Circuit Training is greater than the dick group (SO >SR>Control). Then in the final test, the fat content in the SR-Circuit Training group got a mean score of 14.5±2.3 with a minimum value of 12.1 and a maximum of 17.2, while in the SO-Circuit Training group it got a mean score of 18.3±5.8 with a minimum value of 12.5 and a maximum of 24.8, and in the control group, it got a mean score of 17.8±4.9 with a minimum score of 10.1 and a maximum of 22.3. When viewed from the mean value in the final test, the fat content (%) mean value of SO-Circuit training is greater than the control group and the control group is greater than SR-Circuit Training (SO >Control>SR). When comparing the mean values in the initial test and the final test on fat content (%) there was a difference in the decrease in values in the SR-Circuit training and SO-Circuit training groups while in the control group there was an increase. In the SR-Circuit Training group, the mean value decreased by 3.6, while in the SO-Circuit Training group the mean value decreased by 0.7, and while in the control group the mean value increased by 0.5.

3.3 Discussion

Based on the results of the data processing above, it shows that there are differences in the improvement of physical components in the Circuit Training training variation group, in this case, SR-Circuit Training and SO-Circuit Training. The difference in the influence of variations in Circuit Training exercises is influenced by several factors, including;

- 1. The number of reps on each move.
- 2. Rest time between forms of exercise.
- 3. The average pulse of the exercise, and
- 4. Burning the number of calories during exercise.

Of the two variations of Circuit Training exercises carried out, the two groups both increased muscle endurance and cardiovascular endurance, as well as lower the fat levels of the samples of court tennis athletes. Following the many studies mentioned such by Harsono (2018), Anandiaz (2019), Sandy (2016), and many more.

However, from the results of research and data processing above, each variation has its advantages in improving the physical component for the better. The greatest increase in muscle endurance was obtained through SO-Circuit Training exercises, the greatest increase in cardiovascular endurance was obtained through SR-Circuit Training exercises, and a significant decrease in fat levels was obtained through SR-Circuit training exercises.

A large increase in muscle endurance through SO-Circuit Training is because the *SO-Circuit Training* group only focuses on doing strength training activities so that the sample of athletes who perform this variation can focus more on doing their job either with a larger number of reps or more perfect movements before being followed by a passive break of 30 seconds. It also refers to a study(Willardson & Burkett, 2006) which states that the dominant rest is 3-5min longer in total, allowing to perform more reps due to the availability of a large supply of ATP and PCr energy than in exercise groups that only have less rest.

From the results of the research in this study, it can be used by tennis physical trainers in determining the training program needed by each athlete, if athletes who already have good muscular endurance abilities but are lacking in cardiovascular endurance, coaches can use Circuit Training exercises with additional variations of running or also called SR-Circuit Training. If the athlete has a high-fat content, then you can use the SR-Circuit Training exercise.

In the future, more detailed research may be needed regarding the dietary patterns given to the sample of athletes, to have better accuracy of results in changes in the body composition of court tennis athletes.

IV. Conclusion

Based on the results and discussion above, it can be concluded that:

- 1. There is a significant difference between SR-Circuit Training and SO-Circuit Training exercises on muscle endurance.
- 2. There are significant differences between SR-Circuit Training and SO-Circuit Training exercises on cardiovascular endurance.
- 3. There is a significant difference between SR-Circuit Training and SO-Circuit Training exercises in reducing body fat levels.

References

- Anandiaz. (2019). PENGARUH LATIHAN MENGGUNAKAN METODE CIRCUIT TRAINING.
- Arif, S. (2019). Influence of Leadership, Organizational Culture, Work Motivation, and Job Satisfaction of Performance Principles of Senior High School in Medan City. Budapest International Research and Critics Institute-Journal (BIRCI-Journal). P. 239-254
- Genevois, C. (2019). The importance of aerobic fitness for tennis: a review (part 1). ITF Coaching & Sport Science Review, 27(79), 20–22. https://doi.org/10.52383/itfcoaching.v27i79.79
- Harsono. (2018). Latihan Kondisi Fisik.
- Howell, S., & Kones, R. (2017). "Calories in, calories out" and macronutrient intake: the hope, hype, and science of calories. Am J Physiol Endo-Crinol Metab, 313, 608–612. https://doi.org/10.1152/ajpendo.00156.2017.-One
- Kovacs, M. (2011). Tennis Anatomy.
- Martinez-Rodriguez, A., Collado, E. R., & Vicente-Salar, N. (2015). Estudio de la composición corporal de jugadores adultos de pádel y tenis. Nutricion Hospitalaria, 31(3), 1294–1301. https://doi.org/10.3305/nh.2015.31.3.8004
- Niati, D. R., Siregar, Z. M. E., & Prayoga, Y. (2021). The Effect of Training on Work Performance and Career Development: The Role of Motivation as Intervening Variable. Budapest International Research and Critics Institute (BIRCI-Journal): Humanities and Social Sciences, 4(2), 2385–2393. https://doi.org/10.33258/birci.v4i2.1940
- Paoli, A., Pacelli, Q. F., Moro, T., Marcolin, G., Neri, M., Battaglia, G., Sergi, G., Bolzetta, F., & Bianco, A. (2013). Effects of high-intensity circuit training, lowintensity circuit training and endurance training on blood pressure and lipoproteins in middle-aged overweight men. Lipids in Health and Disease, 12(1), 1–8. https://doi.org/10.1186/1476-511X-12-131
- Reid, M., & Schneiker, K. (2008). Strength and conditioning in tennis: Current research and practice. Journal of Science and Medicine in Sport, 11(3), 248–256. https://doi.org/10.1016/j.jsams.2007.05.002
- Sánchez-Muñoz, C., Sanz, D., & Zabala, M. (2007). Anthropometric characteristics, body composition and somatotype of elite junior tennis players. British Journal of Sports Medicine, 41(11), 793–799. https://doi.org/10.1136/bjsm.2007.037119
- Solanki, R., Bhise, A., Shukla, Y., & Prabhakar, M. (2015). Effects of high intensity circuit training using body weight on aerobic fitness and muscular endurance in college students. Physiotherapy, 101(1), e1418–e1419. https://doi.org/10.1016/j.physio.2015.03.1373
- Willardson, J. M., & Burkett, L. N. (2006). THE EFFECT OF REST INTERVAL LENGTH ON THE SUSTAINABILITY OF SQUAT AND BENCH PRESS REPETITIONS. In Journal of Strength and Conditioning Research (Vol. 20, Issue 2).
- Yudha Isnaini, L. M., Soegiyanto, S., Sugiharto, S., & Sulaiman, S. (2019). Effects of Circuit Training with High Intensity and Low Intensity on Anaerobic Endurance in Basketball Players. International Journal of Multicultural and Multireligious Understanding, 6(3), 1073. https://doi.org/10.18415/ijmmu.v6i3.1018